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Abstract. Methods that learn the structure of Probabilistic Senten-
tial Decision Diagrams (PSDD) from data have achieved state-of-the-art
performance in tractable learning tasks. These methods learn PSDDs in-
crementally by optimizing the likelihood of the induced probability dis-
tribution given available data and are thus robust against missing values,
a relevant trait to address the challenges of embedded applications, such
as failing sensors and resource constraints. However PSDDs are outper-
formed by discriminatively trained models in classification tasks. In this
work, we introduce D-LearnPSDD, a learner that improves the clas-
sification performance of the LearnPSDD algorithm by introducing a
discriminative bias that encodes the conditional relation between the
class and feature variables.

Keywords: probabilistic models · tractable inference · PSDD.

1 Introduction

Probabilistic machine learning models have demonstrated to be a well suited ap-
proach to address the challenges inherent to embedded applications, such as the
need to handle uncertainty and missing data [9]. Moreover, current efforts in the
field of Tractable Probabilistic Modeling have been making great strides towards
successfully balancing the trade-offs between model performance and inference
efficiency, and can thus be deployed in application scenarios where strict resource
budget constraints must be met [10]. However, the models’ robustness against
missing data, enabled by learning them generatively, is often at odds with their
discriminative capabilities, relevant to many embedded application scenarios. In
this work, we address such a conflict by proposing a discriminative-generative
tractable probabilistic model learning strategy, aiming at improved discrimina-
tive capabilities, while maintaining robustness against missing features.

We focus in particular on the Probabilistic Sentential Decision Diagram
(PSDD) [15], a state-of-the-art tractable representation that encodes a joint
probability distribution over a set of random variables. Previous work [10] has
shown how to learn PSDDs that are guaranteed to be hardware efficient while
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remaining robust to missing data and noise. This approach relies largely on the
LearnPSDD algorithm [18], a generative algorithm that incrementally learns
the structure of a PSDD from data. Moreover, it is shown that such robustness
can be exploited to reduce resource usage, or to trade off resource usage with
accuracy by dropping sensors or using less bits. And while the achieved accuracy
is competitive when compared to Bayesian Network classifiers, discriminatively
learned models perform consistently better than purely generative models, also
in other works [19], as the latter remain agnostic to the discriminative task they
ought to perform. This begs the question of whether the discriminative perfor-
mance of the PSDD could be improved while still keeping the desired robustness
and tractability.

In this work, we propose a hybrid discriminative-generative PSDD learn-
ing strategy, D-LearnPSDD, that capitalizes on the model’s ability to encode
domain knowledge as a logic formula and thus provides the PSDD with infor-
mation about the discriminative relationship between the class and the feature
variables. We show that this approach consistently outperforms the purely gen-
erative PSDD and is competitive compared to other classifiers, while remaining
robust to missing values at test time.

2 Background

Notation. We use standard notation: variables are denoted by upper case letters
X and their instantiations by lower case letters x. Sets of variables are denoted
in bold upper case X and their joint instantiations in bold lower case x. For
the classification task, the feature set is denoted by F while the class variable is
denoted by C.

PSDD. Probabilistic Sentential Decision Diagrams (PSDDs) are circuit repre-
sentations of joint probability distributions over binary random variables [15],
and were introduced as probabilistic extensions to sentential decision diagrams
(SDDs) [5], which represent Boolean functions as logical circuits. The inner nodes
of a PSDD alternate between AND gates with two inputs and OR gates with

Fig. 1. A Bayesian network and its equivalent PSDD (taken from [18]).
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arbitrary number of inputs; the root must be an OR node; and each leaf node
encodes a distribution over a variable X (see Fig. 1.c). The combination of an
OR gate with its AND gate inputs is referred to as a decision node, where the
left input of the AND gate is referred to as prime (p), and the right referred to as
sub (s). Each of the n edges of a decision node are annotated with a normalized
probability distribution θ1, ..., θn.

PSDDs possess two important syntactic restrictions: 1) Each AND node must
be decomposable, meaning that their input variables must be disjoint. This prop-
erty is enforced by a variable tree, or vtree, a binary tree whose leaves are the
random variables and which determines how will variables be arranged in primes
and subs in the PSDD (see Fig. 1.d): each internal vtree node is associated with
the PSDD nodes at the same level, variables appearing in the left subtree X are
the primes and the ones appearing in the right subtree Y are the subs; 2) Each
decision node must be deterministic, meaning that only one of its inputs can be
true.

Each node q represents a probability distribution, starting with the terminal
nodes’ univariate distributions. Each decision node q normalized for a vtree node
with X and Y in its left and right subtrees respectively, represents a distribution
over XY (see also Fig 1.a and 1.c):

Prq(XY) =
∑
i

θiPrpi
(X)Prsi(Y) (1)

This is possible because each decision node decomposes the distribution into
independent distributions over X and Y, guided by the vtree. Specifically, prime
and sub variables are independent at PSDD node q given a prime base [15],
written as [q]. This base is the support of the node’s distribution, over which it
defines a non-zero probability. The notation [q] indicates that this is a logical
sentence. The base of a node can be written as a logical sentence using the
recursion [q] =

∨
i[pi] ∧ [si]. Kisa et al. [15] show that prime and sub variables

are independent in PSDD q given a prime base:

Prq(XY|[pi]) = Prpi
(X|[pi])Prsi(Y|[pi]) (2)

= Prpi
(X)Prsi(Y)

This equation encodes context specific independence [2], where variables (or sets
of variables) are independent given a logical sentence. The structural constraints
of the PSDD are meant to exploit such independencies, leading to a represen-
tation that can answer a number of complex queries in polynomial time [1],
which is not guaranteed when performing inference on Bayesian Networks, as
they don’t encode and therefore can’t exploit such local structures.

LearnPSDD. The LearnPSDD algorithm [18] generatively learns a PSDD that
maximizes the likelihood given a data set. LearnPSDD first uses the data
to learn a vtree, a binary tree that minimizes the mutual information among
all possible sets of variables. Next, given the vtree, it learns the PSDD struc-
ture by iteratively applying the operations Split and Clone on the nodes in the
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PSDD [18]. These operations keep the PSDD syntactically sound while improv-
ing likelihood of the distribution represented by the PSDD. A problem with
LearnPSDD when using the resulting PSDD for classfication is that when the
class variable is only weakly dependent on the features, the learner may choose
to ignore that dependency making the model useless for classification.

3 A Discriminative Bias for PSDD learning

Generative learners such as LearnPSDD optimize the likelihood of the distri-
bution given the training data rather than the conditional likelihood of the class
variable C given a full set of feature variables F. As a result, the zero-one loss or
accuracy is often worse than simple models such as Naive Bayes (NB), and its
close relative Tree Augmented Naive Bayes (TANB) [10]. Often NB and TANB
perform surprisingly well on classification tasks although they encode a simple –
or naive – structure that is learned generatively [8]. One of the main reasons why
(TA)NB works well for classification even though it is generative is because it
has a discriminative bias that directly encodes that all features are conditionally
dependent on the class variable. In this work we use this insight to alter the
LearnPSDD algorithm such that it learns a PSDD that has a discriminative
bias, which improves classification performance while at the same time retaining
the advantages from generative learning to be robust against missing data.

We introduce an extension to LearnPSDD, called D-LearnPSDD, which is
based on the insight that the learned model should satisfy the “class conditional
constraint” present in Bayesian Network classifiers. That is, all feature variables
must be conditioned on the class variable. This enforces a structure that is
beneficial for classification while still allowing to generatively learn a PSDD
that encodes the distribution over all variables using a state-of-the-art learning
strategy [18].

3.1 Discriminative bias

The classification task can be stated as a probabilistic query:

Pr(C|F) ∼ Pr(F|C) · Pr(C).

Our goal is to learn a PSDD whose root decision node directly represents the
conditional probability distribution Pr(F|C). This can be achieved by forcing
the primes of the first line in Eq. 2 to be [p0] = [¬c] and [p1] = [c], where [c]
states that the propositional variable c representing the class variable is true, thus
C = 1, and similarly [¬c] represents C = 0. For now we assume the class is binary
and will show later how to generalize to a multi-valued class variable. For the
feature variables we can assume they are binary without loss of generality since
a multi-valued variable can be converted to a set of binary variables (following
[18]). To achieve our goal we first need the following proposition:
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Proposition 1. Given (i) a vtree with a single variable C as the prime and
variables F as the sub of the root node, and (ii) an initial PSDD where the
root decision node decomposes the distribution as [root] = ([p0] ∧ [s0]) ∨ ([p1] ∧
[s1]); applying the Split and Clone operators will never change the root decision
decomposition [root] = ([p0] ∧ [s0]) ∨ ([p1] ∧ [s1]).

Proof. The D-LearnPSDD algorithm iteratively applies two operations: Clone
and Split (following the algorithm in [18]). First, the Clone operator requires a
parent node, which is not available for the root node. Since the initial PSDD
follows the template described above, whose only restriction is on the root node,
there is no parent available to clone and the template thus remains intact. Sec-
ond, the Split operator splits one of the subs to extend the sentence that is used
to mutually exclusively and exhaustively define all children. Since the given vtree
has only one variable, C, as the prime of the root node, there are no other vari-
ables available to add to the sub. The Split operator cant thus not be applied
anymore and the template stays intact (see Figures 1(c) and (d)).

We can now show that the resulting PSDD contains nodes that directly
represent the distribution Pr(F|C).

Proposition 2. A PSDD of the form [root] = ([¬c]∧ [s0])∨([c]∧ [s1]) with c the
propositional variable that the class variable is true, and s0 and s1 any formula
with propositional feature variables f0, . . . , fn, directly expresses the distribution
Pr(F|C).

Proof. Applying this to Eq. 1 results in:

Prq(CF) = Pr¬c(C)Prs0(F) + Prc(C)Prs1(F)

= Pr¬c(C|[¬c]) · Prs0(F|[¬c]) + Prc(C|[c]) · Prs1(F|[c])
= Pr¬c(C = 0) · Prs0(F|C = 0) + Prc(C = 1) · Prs1(F|C = 1)

The learned PSDD thus contains a node s0 with distribution Prs0 that di-
rectly represents Pr(F|C = 0) and a node s1 with distribution Prs1 that repre-
sents Pr(F|C = 1). The PSDD thus encodes Pr(F|C) directly because the two
possible value assignments of C are C = 0 and C = 1.

In the following examples, it is illustrated why both the specific vtree and
template PSDD are required.

Example 1. This example shows a PSDD that can be generated by the generative
LearnPSDD learner and that initializes the incremental learning procedure
[18]. Fig. 2 shows a PSDD that encodes a fully factorized probability distribution
normalized for the vtree in (a). Note that the vtree connects the class variable
C to some of the feature variables, but doesn’t for all (i.e. F1). The learning
algorithm might thus never learn conditional relations between certain features
and the class.
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Example 2. This example show a vtree and PSDD that is generated by D-
LearnPSDD. Fig. 2.(e) shows the PSDD that explicitly conditions the feature
set F on the class variable by following the template from Theorem 2. This
PSDD is normalized for the vtree in (c), which has been forced to have the class
variable C as the prime of the root node.

Example 3. Fig. 2.(d) shows why only setting the vtree in (c) is not sufficient for
the learner to condition the features on the class. When initializing on a PSDD
that encodes a fully factorized formula, and then applying the Split and Clone
operators, the learner is not guaranteed to learn the relation between the class
variable and the features. In this worst case scenario, the learned model could
have an even worse performance than the case at Example 1. By applying Eq. 1
on the top split, we can give intuition why this is the case:

Prq(CF) = Prp0(C|[c ∨ ¬c]) · Prs0(F|[c ∨ ¬c])
= (Prp1(C|[c]) + Prp2(C|[¬c])) · Prs0(F|[c ∨ ¬c])
= (Prp1(C = 1) + Prp2(C = 0)) · Prs0(F)

The PSDD thus encodes a distribution that assumes that the class variable is
completely independent from all feature variables. While this might still result
in a high likelihood, the classification accuracy will be low.

D-LearnPSDD as introduced for a binary classification task above can be
generalized to an n-valued class variables as follows: (1) The class variable C will
be represented by multiple propositional variables c0, c1, . . . , cn that represent
the set C = 0, C = 1, . . . , C = n, of which exactly one will be true at all times. (2)
The vtree in Proposition 1 now starts as a right-linear tree over c0, . . . , cn. The
F variables are the sub of the node that has cn as prime. (3) The initial PSDD
in Proposition 2 now has a root the form [root] =

∨
i=0...n([ci

∧
j:0...n∧i 6=j ¬cj ] ∧

[si]), which remains the same after applying Split and Clone. The root decision
node now represents the distribution Prq(CF) =

∑
i:0...n Prci

∧
j 6=i ¬cj (C = i) ·

Prsi(F|C = i) and has thus nodes that directly represent the discriminative bias.

3.2 Generative bias

Learning the distribution over the feature variables is a generative learning pro-
cess and we can achieve this by applying the Split and Clone operators in the
same way as the original LearnPSDD algorithm. In the previous section we had
not yet defined how should Pr(F|C) from Proposition 2 be represented in the
initial PSDD, we only explained how our constraint enforces it. So the question is
how do we exactly define the nodes corresponding to s0 and s1 with distributions
Pr(F|C = 0) and Pr(F|C = 1)? We follow the intuition behind (TA)NB here and
start with a PSDD that encodes a distribution where all feature variables are
independent given the class variable (see Figure 2.e). Next, the LearnPSDD
algorithm will incrementally learn the relations between the feature variables by
applying the Split and Clone operations following the approach in [18].
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3.3 Obtaining the vtree

In learnPSDD, the decision nodes decompose the distribution into indepen-
dent distributions. Thus, the vtree is learned from data by maximizing the ap-
proximate pairwise mutual information, as this metric quantifies the level of
independence between two sets of variables. For D-LearnPSDD we are inter-
ested in the level of conditional independence between sets of feature variables
given the class variable. We thus obtain the vtree by optimizing for Conditional
Mutual Information instead and replace mutual information in the approach in

[18] with: CMI(X,Y|Z) =
∑

x

∑
y

∑
z Pr(xy) log Pr(z) Pr(xyz)

Pr(xz) Pr(yz) .
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Fig. 2. Examples of vtrees and initial PSDDs.

4 Experiments

We evaluate the performance of D-LearnPSDD and compare it with that of
LearnPSDD, two generative Bayesian classifiers (NB and TANB) and a dis-
criminative classifier (logistic regression). In particular, we discuss the following
research queries: (1) Section 4.2 examines whether the introduced discriminative
bias improves classification performance on PSDDs. (2) Section 4.3 analyzes the
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impact of the vtree and the imposed structural constraints on model tractability
and performance. (3) Finally, Section 4.4 compares the robustness to missing
values for all classification approaches.

4.1 Setup

Table 1. Datasets
Dataset |F| |C| |N|

Australian 40 2 690
Breast 28 2 683
Chess 39 2 3196
Cleve 25 2 303
Corral 6 2 160
Credit 42 2 653

Diabetes 11 2 768
German 54 2 1000
Glass 17 6 214
Heart 9 2 270
Iris 12 3 150
Mofn 10 2 1324
Pima 11 2 768
Vehicle 57 2 846

Waveform 109 3 5000

We ran our experiments on the suite of 15 standard ma-
chine learning benchmarks listed in Table 1. All of the
datasets come from the UCI machine learning repository
[6], with exception of “Mofn” and “Corral” [16]. As pre-
processing steps, we applied the discretization method de-
scribed in [7], and we binarized all variables using a one-
hot encoding. Moreover, we removed instances with miss-
ing values and features whose value was always equal to 0.
Table 1 summarizes the number of binary features |F|, the
number of classes |C| and the available number of training
samples |N| per dataset.

4.2 Evaluation of DG-LearnPSDD

Table 2 compares D-LearnPSDD, LearnPSDD, Naive Bayes (NB), Tree Aug-
mented Naive Bayes (TANB) and logistic regression (LogReg)4 in terms of accu-
racy via five fold cross validation 5. For LearnPSDD, we incrementally learned
a model on each fold until convergence on validation-data log-likelihood, follow-
ing the methodology in [18]. For D-LearnPSDD, we incrementally learned a
model on each fold until likelihood converged but then selected the incremental
model with the highest training set accuracy. For NB and TANB, we learned a
model per fold and compiled them to Arithmetic Circuits 6, a more general form
of PSDDs [4], which allows us to compare the size of these Bayes net classifiers
and the PSDDs. Finally, we compare all probabilistic models with a discrimina-
tive classifier, a multinomial logistic regression model with a ridge estimator.

Table 2 shows that the proposed D-LearnPSDD clearly benefits from the in-
troduced discriminative bias, outperforming LearnPSDD in all but two datasets,
as the latter method is not guaranteed to learn significant relations between fea-
ture and class variables. Moreover, it outperforms Bayesian classifiers in most
benchmarks, as the learned PSDDs are more expressive and allow to encode
complex relationships among sets of variables or local dependencies such as
context specific independence, while remaining tractable. Finally, note that the
D-LearnPSDD is competitive in terms of accuracy with respect to logistic
regression (LogReg) a purely discriminative classification approach.

4 NB, TANB and LogReg are learned using Weka with default settings.
5 In each fold, we hold 10% of the data for validation.
6 Using the ACE tool Available at http://reasoning.cs.ucla.edu/ace/.
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Table 2. Five cross fold accuracy and size in number of parameters

Dataset
D-LearnPSDD LearnPSDD NB TANB LogReg
Accuracy Size Accuracy Size Accuracy Size Accuracy Size Accuracy

Australian 86.2± 3.6 367 84.9± 2.7 386 85.1± 3.1 161 85.8± 3.4 312 84.1± 3.4
Breast 97.1± 0.9 291 94.9± 0.5 491 97.7± 1.2 114 97.7± 1.2 219 96.5± 1.6
Chess 97.3± 1.4 2178 94.9± 1.6 2186 87.7± 1.4 158 91.7± 2.2 309 96.9± 0.7
Cleve 82.2± 2.5 292 81.9± 3.2 184 84.9± 3.3 102 79.9± 2.2 196 81.5± 2.9

Corral 6 99.4± 1.4 39 98.1± 2.8 58 89.4± 5.2 26 98.8± 1.7 45 86.3± 6.7
Credit 85.6± 3.1 693 86.1± 3.6 611 86.8± 4.4 170 86.1± 3.9 326 84.7± 4.9

Diabetes 78.7± 2.9 124 77.2± 3.3 144 77.4± 2.56 46 75.8± 3.5 86 78.4± 2.6
German 72.3± 3.2 1185 69.9± 2.3 645 73.5± 2.7 218 74.5± 1.9 429 74.4± 2.3
Glass 79.1± 1.9 214 72.4± 6.2 321 70.0± 4.9 203 69.5± 5.2 318 73.0± 5.7
Heart 84.1± 4.3 51 78.5± 5.3 75 84.0± 3.8 38 83.0± 5.1 70 84.0± 4.7
Iris 90.0± 0.1 76 94.0± 3.7 158 94.7± 1.8 75 94.7± 1.8 131 94.7± 2.9
Mofn 98.9± 0.9 260 97.1± 2.4 260 85.0± 5.7 42 92.8± 2.6 78 100.0± 0
Pima 80.2± 0.3 108 74.7± 3.2 110 77.6± 3.0 46 76.3± 2.9 86 77.7± 2.9
Vehicle 95.0± 1.7 1186 93.9± 1.69 1560 86.3± 2.00 228 93.0± 0.8 442 94.5± 2.4

Waveform 85.0± 1.0 3441 78.7± 5.6 2585 80.7± 1.9 657 83.1± 1.1 1296 85.5± 0.7

4.3 Impact of the vtree on discriminative performance

The structure and size of the learned PSDD is largely determined by the vtree it
is normalized for. Naturally, the vtree also has an important role in determining
the quality (in terms of log-likelihood) of the probability distribution encoded
by the learned PSDD [18]. In this section, we study the impact that the choice
of vtree and learning strategy has on the trade-offs between model tractability,
quality and discriminative performance.

Figure 3 (top) shows test-set log-likelihood and (bottom) classification ac-
curacy as a function of model size (in number of parameters) for the “Chess”
dataset. This figure contrasts the results of three learning approaches: first DG-
LearnPSDD when the vtree learning stage optimizes mutual information (MI,
shown in light blue); second when it optimizes conditional mutual information
(CMI, shown in dark blue); and third the traditional LearnPSDD (in orange).
We display average log-likelihood and accuracy over logarithmically distributed
ranges of model size.

Figure 3(a) shows that likelihood improves at a faster rate during the first
iterations of LearnPSDD, but eventually settles to the same values as D-
LearnPSDD because both optimize for likelihood. However, the discriminative
bias guarantees that classification accuracy on the initial model will be at least
as high as that of a Naive Bayes classifier (see Figure 3(b)). Moreover, this re-
sults in consistently superior accuracy (for the CMI case) compared to the purely
generative LearnPSDD approach as shown also in Table 2. The dip in accuracy
during the second and third intervals are a consequence of the generative learn-
ing, which optimizes for likelihood and can therefore initially yield feature-value
correlations that decrease the model’s performance as a classifier.

Finally, Figure 3(b) demonstrates that learning a vtree that optimizes con-
ditional mutual information results in an overall better performance versus ac-
curacy trade-off when compared to optimizing for mutual information. Such a
conditional mutual information objective function is consistent with the condi-
tional independence constraint we impose on the structure of the PSDD and



10 L. Galindez Olascoaga et al.

allows the model to consider the special status of the class variable in the dis-
criminative task.
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Fig. 3. Log-likelihood and accuracy vs. model size trade-off of the incremental PSDD
learning approaches. MI and CMI denote mutual information and conditional mutual
information vtree learning, respectively.

4.4 Robustness to missing features

The generative models in this paper encode a joint probability distribution over
all variables and therefore tend to be more robust against missing features than
discriminative models, which only learn relations relevant to their discriminative
task. In this experiment, we assessed this robustness aspect by simulating the
random failure of 10% of the original feature set per benchmark and per fold
in five-fold cross-validation. Figure 4 shows the average accuracy over 10 such
feature failure trials in each of the 5 folds (flat markers) in relation to their full
feature set accuracy reported in Table 2 (shaped markers). As expected, the per-
formance of the discriminative classifier (LogReg) suffers the most during feature
failure, while D-LearnPSDD and LearnPSDD are notably more robust than
any other approach, with accuracy losses of no more than 8%. Note from the
flat markers that the performance of D-LearnPSDD under feature failure is
the best in all datasets but one.

5 Related work

There are a number of works that deal with the conflict between generative and
discriminative model learning, some dating back decades [12]. Models that are
based on the same general representation, Arithmetic Circuits and Sum-Product
Networks, have been developed to support discriminative and generative learn-
ing of parameters [21, 11] and structure [22, 19]. They share the advantage of
being tractable but expressive enough to achieve state-of-the-art performance.
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Fig. 4. Classification robustness per method.

Typically, different approaches are followed to learn models catered to either gen-
erative or discriminative tasks, but some methods exploit discriminative models’
properties to deal with missing variables [20]. Other works that also constraint
the structure of PSDDs have been proposed before, such as Choi et al. [3]. How-
ever, they learn separate structured PSDDs for each distribution of features
given the class to improve accuracy and they only do parameter learning, not
structure learning. There are also a number of methods that focus specifically
on the interaction between discriminative and generative learning. Khosravi et
al. [13] provides a method to compute expected predictions of a discriminative
model with respect to a probability distribution defined by an arbitrary gener-
ative model in a tractable manner. This combination allows to handle missing
values using discriminative couterparts of generative classifiers [14]. More distant
to this work is the line of hybrid discriminative and generative models [17], their
focus is on semisupervised learning and deals with missing labels.

6 Conclusion

This paper introduces a PSDD learning technique that improves classification
performance by introducing a discriminative bias while at the same time it en-
sures robustness against missing data by exploiting generative learning. The
method capitalizes on PSDDs’ domain knowledge encoding capabilities to en-
force the conditional relation between the class and the features. We prove that
this constraint is guaranteed to be enforced throughout the learning process
and we show how not encoding such a relation might lead to poor classification
performance. Evaluation on a suite of benchmarking datasets shows that the pro-
posed technique outperforms purely generative PSDDs in terms of classification
accuracy and the other baseline classifiers in terms of robustness.
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