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1. Tractability notions disregard hardware implementation details and are 
given in abstract terms (e.g. time and space). 

2. Traditional resource aware techniques do not exploit hardware scaling 
opportunities (e.g. turning sensors off, reducing bits and precision).
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Tractable probabilistic models possess a set of traits that make them ideal for 
embedded sensory applications:

-Robustness to missing data allows them to cope with sensor failure.
-Small data needs allow them to adapt to different users quickly.
-Tractability enables reliable inference under constrained resource budgets.

Arithmetic Circuits are one of those tractable representations [Darwiche2009]:
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The properties of Arithmetic Circuits allow us to reliably predict resource usage. 
We propose the Hardware-aware cost, given in terms of a specific hardware 
resource (e.g. energy consumption).
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Standard IEEE floating point: 64, 32, 16, 8 bits. 
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Experiments on a smartphone-based Human Activity Recognition 
benchmark with gyroscope and accelerometer sensor signals,
and statistical features. The cost is given in terms of relative 
energy consumption.

Potential cost savings of up to 90 % with accuracy loss of less 
than 1 % enabled by a combination of feature and sensor 
pruning, model simplification and precision reduction.

Potential use for on-line scenarios where resources and 
performance must be traded-off dynamically
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Scale each system property individually and get Pareto optimal after each 
stage.
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